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Abstract—Time perception is a fundamental component of in-
telligence that structures the way humans act in various contexts.
As action evolves over time, timing is necessary to appreciate
environmental contingencies, estimate relations between events
and predict the effects of our actions at future moments. Despite
the fundamental role of time in human cognition it remains
largely unexplored in the field of artificial cognitive systems.

The present work makes concrete steps towards making
artificial systems aware that the notion of time as a unique
entity that can be processed on its own right. To this end, we
evolve artificial neural networks to perceive the flow of time
and to be able to accomplish three different duration processing
tasks. Subsequently we study the internal dynamics of neural
networks to obtain insight on the representation and processing
mechanisms of time. The self-organized neural network solutions
exhibit important brain-like properties and suggests directions
for extending existing theories in timing neuro-psychology.

I. INTRODUCTION

The perception and processing of time is particularly new
in the field of autonomous cognitive systems [1]. Temporal
cognition plays a key role in many of our daily activities from
recalling the past and making plans for the future, to estimating
the remaining time during exams and dancing following the
rhythm. Research in the emerging research branch of artifi-
cial time perception is expected to significantly contribute in
implementing efficient artificial agents that will be seamlessy
integrated into the heavily time structured human societies.

Interestingly, the fact that we can perceive space locations
as many times as we want but we can perceive temporal
moments only once, separates the notion of time from any
other environemnt cue a system may observe.

In the field of timing neuro-psychology, the representations
and processing mechanisms of time in the brain, remain largely
unknown. Therefore, the development of human-like time
dependent cognitive capacities (synchrony, turn-taking, mental
time travel, temporal planning, temporal attention, etc.) into
artificial systems remains an open issue.

The present study aims at the un-biased exploration of
possible time representations and processing mechanisms by
considering (i) the functional integration of time processing
with other skills, in the framework of time-dependent robotic
behavioral tasks, (ii) the embodied exploration of duration
processing capacity in dynamic and noisy experimental setups
that improve the generalization of the computational model,
and (iii) the ability of the “very same model” to address
not only one, but three different duration processing tasks. In
particular, the present study considers Duration Comparison,
Duration Reproduction and Past Characterization that have to

be accomplished by the very same robotic cognitive system.
The “behavioral” approach adopted in the current paper links
with the Behavioral Theory of Timing [2] and Learning to
Time [3]. These theories assume that the behavioral vocabulary
of subjects supports duration perception, a view that has been
also supported by recent experimental work [4].

We employ a Continuous Time Recurrent Neural Network
(CTRNN) [5], [6] to develop an “artificial brain” for the robotic
agent. An evolutionary design procedure based on Genetic
Algorithms [7] is used to search possible configurations of the
artificial brain that can accomplish the three aforementioned
tasks. This procedure promotes the unbiased self-organization
of time representation in the cognitive system.

Following a series of statistically independent experiments
we obtain a set of artificial brains that fit the behavioral
requirements of our study (i.e., accomplish the three duration
processing tasks). The automatically designed artificial brains
are subsequently studied to reveal the characteristics of effec-
tive time perception mechanisms that may be also valid for
interval processing in the brain. In short, the neural circuits
that support ordinary cognitive processing operate in an oscil-
latory mode that enables the encoding of elapsed time in the
amplitude of the oscillation. This new representation facilitates
the multimodal processing of time intervals as indicated by
the accomplishment of the three different duration processing
tasks.

The rest of the paper is structured as follows. The next
section summarizes the experimental setup, describing the
simulated robot and the artificial brain used to endow it
with cognitive and behavioral capacities. Then, we describe
the behavioral tasks considered in the present work, and the
evolutionary procedure employed to explore effective CTRNN
configurations. In the following section we describe the ob-
tained results focusing on the internal mechanisms of the
artificial brains. Then we discuss how our findings compare
to the dedicated and intrinsic representations of time. In the
last section we summarize the characteristics of the new time
representation suggested by our experiments and we provide
directions for future work.

II. EXPERIMENTAL SETUP

A. Simulation environment

We have implemented a simulation of a two wheeled mo-
bile robot equipped with eight uniformly distributed distance,
light and sound sensors. The distance sensor is mainly used
during navigation to avoid robot bumping on the walls. The
light sensor is used to receive a task-indicator informing the



robot which one of the three tasks is considered at a given
moment of the experimentation. The sound sensor is used
for the perception of temporal durations (i.e., the robot must
perceive the temporal duration of emitted sounds).

The simulated robot operates in a rather simple environ-
ment with two walls located on its left and right side (Figure 1).
The robot has to perceive the duration of sound cues and drive
without bumps along the corridor that is shaped by the two
walls, behaving as requested by the scenario of the particular
task.

A three-level Continuous Time Recurrent Neural Network
(CTRNN) [5], [8] is used to provide the artificial agent with
behavioral and cognitive capacities. This type of network rep-
resents knowledge in terms of internal neurodynamic attractors
and it is therefore particularly appropriate for implementing
cognitive capacity that is inherently continuous similar to our
mind. The network consists of 4 neurons in the upper level,
6 neurons in the middle level and 4 neurons in the lower
level. Full intra- and inter- level connectivity is assumed in
the model. Synaptic weights are determined by an evolutionary
procedure (described below) and they remain constant during
task testing. Similar to previous studies [9], [10] CTRNN
neurons are governed by the standard leaky integrator equation:
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where γi is the state (cell potential) of the i− th neuron. All
neurons in a network share the same time constant τ = 0.25
in order to avoid explicit differentiation in the functionality of
CTRNN parts.

The state of each neuron is updated according to external
sensory input I weighted by ws, and the activity of presynaptic
neurons A weighted by wp. After estimating neural state by
eq (1), the activation of the i− th neuron is calculated by the
non-linear sigmoid function according to:

Ai =
1

1 + e−(γi−θi)
(2)

where θi is the activation bias applied on the i− th neuron.

All sensory information is projected only in the middle
level of the CTRNN. This allows different functional roles to
be developed in each layer of the network. The four neurons
at the lower level of the CTRNN are connected to a motor
neuron that controls the wheels of the robot. The speed for
each one of the two wheels is determined by a pair of neurons
operating according to the flexor/extensor principle (i.e., one is
increasing and the other is decreasing the speed of the wheel).
Let us assume that at a given time step, the activation of the
motor neuron is Am. Then, the left and right wheel speed of
the simulated robot is given by:

speedl = 0.4+0.6Am speedr = 0.4+0.6(1−Am) (3)

Following this approach the agent moves with a constant
total speed, while the activation Am controls the direction of
movement.

Goal 1 Goal 2

Sound Sound

(a) (b)

Fig. 1. A graphical representation of the experimental setup. The robot is
depicted as a small circle in the bottom of the corridor. Depending on the
task, the robot is asked to either reach one of the two goal positions as shown
in part (a), or make a sudden 180o turn as shown in part (b).

III. BEHAVIORAL TASKS

To explore time representations through artificial neural
network self-organization, the present study considers simple
maze tasks that have to be achieved by a simulated robotic
agent, similar to [11]–[13]. Each one of the three tasks
addresses a different aspect of duration processing. More
specifically, there are two main types of experiments in the
field of interval timing memorization, one focusing on duration
comparison and the other on the reproduction of an earlier-
presented duration [14]. In the present study we explore both
of these types, considering additionally a simplified example
of past time-stamping.

A. Duration Comparison

The experiment assumes that the robot perceives two time
intervals A and B, compares them and drives to the end of
the corridor turning either to the left side in the case that A
was shorter than B, or, to the right side in the case that A was
longer than B (see Figure 1(a)).

The experiment starts with the simulated mobile robot
located at the beginning of the corridor environment. The artifi-
cial agent remains at the initial position for a short initialization
phase of 10 simulation steps, where it experiences a light cue
indicating that the experimental procedure for the Duration
Comparison task will follow (see Figure 4(a)). Subsequently,
after a short preparation phase, the agent experiences two
sounds having temporal durations A and B, both of them
randomly specified in the range [10, 100]. The two sounds
are separated by a predefined rest period of 10 simulation
steps. Just after sound B, the agent is provided 20 simulation
steps to compare A and B, decide which one was longer and
prepare its motion strategy. At the end of this period the robot
is provided a “go” signal and it starts navigating across the
corridor. In order to successfully complete the task, the agent
has to navigate to the end of the corridor and turn right in the
case that the A interval was longer, or, turn left in the case
that the A interval was shorter (than B).

To evaluate the response of the artificial agent we mark two
different positions in the environment which are used as goal
positions for the robot, as shown in Figure 1(a). Depending on
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Fig. 3. The structure of the Duration Reproduction task.

whether A has been actually longer than B or not, we select the
correct goal position and we measure the minimum distance D,
between the agent’s path and that goal position (i.e., when A <
B the agent should approximately reach Goal1, but when A >
B the agent should approximately reach Goal2). Additionally,
during navigation, we consider the number Bumps of robot
bumps on the walls. Overall, the success of the agent to a
given duration comparison i ∈ {A > B,A < B} is estimated
as:

Si =
100

D(Bumps+ 1)
(4)

By maximizing SA>B and SA<B we aim at minimizing the
distance from the goals, therefore produce responses at the
correct side of the corridor as well as avoid bumping on
the walls. The total capacity of the robot to accomplish the
Duration Comparison task considering both possible relations
between A and B intervals, is estimated as:

FITDC = SA>B · SA<B (5)

B. Duration Reproduction

The experiment assumes that the robot perceives a time
interval A and reproduces its duration by moving forward
for the same amount of time. To demonstrate the end of the
reproduction period, the robot makes a quick 180o turn as
shown in Figure 1(b).

The experiment starts with the robot located at the begin-
ning of the corridor. After a short initialization period, the
agent experiences a light cue indicating that the experimental
procedure that will follow, concerns the Duration Reproduction
task (see Figure 4(b)). Subsequently, the agent experiences a
sound with temporal duration A, that is randomly specified in
the range [10, 100]. Just after this sound, the agent is provided
20 simulation steps to prepare its behavioral response. Then,
the agent is provided a “go” signal and it starts navigating
towards the end of the corridor. In order to successfully
complete the task, the agent has to move forward navigating
freely inside the corridor, for a time interval that equals to
A. As soon as the robot believes that the A interval has been
completed, it has to make an immediate turn at 180o degrees,
and continue navigation facing the bottom of the corridor.

To evaluate the response of the artificial agent we consider
its motion direction in the whole period of duration reproduc-
tion. To enable the robot express the 180o turning in a sequence
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Fig. 4. The structure of the Past Characterization task.

of actions, we examine robot’s behavior for A+30 simulation
steps (i.e., a period slightly longer than A).

During the reproduction of the A interval, the robot must
move mostly forward, which means its direction Dir should
be at approximately 0o degrees. Just after the completion of the
A and for the next 30 steps, the robot must turn to the opposite
direction steering at 180o degrees. The success of the agent on
the duration reproduction task is numerically evaluated by:

FITDR =
1∑length(A)

1 Dir2 +
∑length(A)+30

length(A)+1 (180−Dir)2

(6)
By maximizing FITDR, we aim at minimizing the difference
between the robot moving direction and the optimal moving
direction as it is explained above.

C. Past Characterization

The procedure assumes that the robot experiences a sound
and after some time it is asked to judge whether this particular
experience was short or long time ago. The robot responds by
navigating along the corridor and turning either to the left side
in the case that the sound event happened in the distant past,
or, to the right side in the case that the sound appeared in the
recent past (see Figure 1(a)).

The experiment starts with the simulated mobile robot
located at the beginning of the corridor. After a short initial-
ization period, the agent experiences a light cue indicating
that the experimental procedure that will follow, concerns
the Past Characterization task (see Figure 4(c)). Subsequently,
a preparation interval followes with duration TD randomly
specified either in the range TD ∈ [15, 25] (for the case of
distant past), or TD ∈ [65, 75] (for the case of recent past).
After the emittion of sound, a wait period follows that is
dynamically specified as W = 100 − TD. As a result, the
pair of durations TD and W determines whether the sound
experience of the agent was long or short time ago.

At the end of the wait period the agent is provided a
“go” signal and it starts navigating towards the end of the
corridor. To evaluate the response of the robot we use the
two goal positions that have been also considered in the
Duration Comparison experiment (see Figure 1(a)). Depending
on whether the sound has been actually experienced by the
agent in the distant or recent past, we select the appropriate
goal position and we measure the minimum distance D of the



agent’s path from that goal (i.e., in the case of distant past the
agent should steer towards Goal1, while in the case of recent
past the agent should steer towards Goal2). To evaluate robot’s
response we use two succes measures Sdistant and Srecent

defined according to eq. 4. Overall, the capacity of the robot
to accomplish the Past Characterization task is estimated as:

FITPC = Sdistant · Srecent (7)

IV. EVOLUTIONARY DESIGN

We employ a Genetic Algorithm (GA) to explore possi-
ble cognitive mechanisms that enable the artificial agent to
perceive and process time accomplishing the three behavioral
tasks described above [7]. We use a population of 1000
artificial chromosomes, each one encoding a different CTRNN
configuration, or a different robot brain. Each candidate
CTRNN solution is tested on a randomly initialized version
of the three tasks. To get an estimate of the CTRNN’s time
processing capacity, we combine in a multiplicative manner
the performance metrics associated with each one of the three
tasks. Therefore, the global fitness of a chromosome is defined
as follows:

F = FITDC · FITDR · FITPC (8)

By maximizing F , we get robot brains that can satisfactorily
accomplish the three duration processing tasks considered in
the present study.

We have used a standard GA process with survival of the
fittest individuals along consecutive generations [7]. Real-value
encoding is used to map synaptic weights and neural biases
of the CTRNN into chromosomes. During reproduction, the
best 30 individuals of a given generation mate with randomly
selected individuals using single point crossover, to produce
the next generation of CTRNNs. Mutation corresponds to
the addition of up to 25% noise, in the parameters encoded
to the chromosome, with each CTRNN parameter having a
probability of 4% to be mutated.

In all evolutionary runs the randomly initialized population
is evolved for a predefined number of 500 generations. The
present work focuses on temporal cognition mechanisms,
rather than the robotic behaviors, which means that robot
responses should be mainly considered as proofs of the time
processing capacity of the cognitive system.

V. RESULTS

We have conducted ten statistically independent evolu-
tionary runs to explore possible neural mechanisms that are
capable of accomplishing the three duration processing tasks
described above. The evolutionary procedures converged suc-
cessfully in six of the runs producing artificial brains that are
able to perceive and process time. In order to obtain insight
into the mechanisms self-organized in the robot brains, we
have investigated neural activity in the successfully evolved
CTRNN configurations. Interestingly, even if the evolutionary
procedures have been statistically independent, all obtained
results show (qualitatively) similar internal mechanisms. Be-
low we discuss the characteristics that are common between
successful artificial brains.

1) Duration Comparison: To assess the duration compar-
ison capacity of the model, we have tested multiple pairs of
random durations. In all cases the robot could robustly perceive
the duration of intervals, compare their lengths, and finally
respond successfully by driving to the end of the corridor
and turn towards the side that corresponds to the longest
interval. The behavior of the robotic agent when comparing
two time intervals with duration 45 and 60 simulation steps
is shown in Figure 5(a). The robot, rather than navigating
in the middle of the free corridor space and then turning
either left or right, adopts a motion strategy that very early
distinguishes between the two options. This is because our
model does not assume an explicit working memory module
that temporally stores comparison results to be used when the
robot approaches the end of the corridor. Alternatively, in our
model, the dynamics of neural activity encode the result of the
comparison, which slightly but constantly affects the motion
plan, gradually moving the robot to the chosen side.

The neural activities in the three layers of the CTRNN
when the robot compares two time intervals with lengths
A = 45 and B = 60, are shown in Figure 6. Each subplot
corresponds to a different layer of the CTRNN. In all plots
the first two black vertical solid lines indicate the A period,
and the next pair of black vertical dotted lines indicate the B
period. The fifth vertical line corresponds to the time that the
“go” signal is given to the robot.

In all layers of the CTRNN the activity of neurons is mainly
governed by oscillatory dynamics. Oscillations are particularly
useful from a time representation perspective, because they
provide a means for measuring time intervals (i.e., by counting
the number of oscillations) as it is suggested by dedicated
timing representations [15], [16]. At the same time, from a
robot control perspective, oscillatory dynamics enable steer-
ing the robot in the desired direction. Therefore, oscillating
mechanisms seem particularly appropriate to support both
the cognitive and the behavioral requirements of the time-
processing tasks. This is in support to the theories promoting
a strong correlation between embodiment and time perception
[4], [17], [18].

Besides the fact that the task is clearly separated into two
distinct phases of (i) perception and (ii) action, in Figure 6 we
see that the same neurons are activated in the whole duration
of the task. In other words there are no neurons devoted only
to time perception. The neurons supporting ordinary cognitive
tasks undertake additionally the responsibility of encoding the
flow of time as it is suggested by intrinsic time representations.

The examination of neural activity in the three network
layers shows that there is a slight differentiation of the upper
part with respect to time perception. In particular, in some
of the upper level neurons, the amplitude of the oscillation
increases as long as the agent experiences sound (see for
example the activity of the upper level neuron depicted with
a thick line, when the agent experiences either interval A or
B, in Figure 6). This suggests that duration may be encoded
in the amplitude of the oscillatory activity.

2) Duration Reproduction: In this task, the robot has to
memorize and reproduce the length of an experienced duration.
The trace of the robot when reproducing a temporal interval of
71 simulation steps is depicted in the first plot of Figure 5(b).
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Fig. 5. The behavioral responses of the robot in the three tasks considered in the present study. Part (a) regards Duration Comparison. In the first case the robot
compares intervals A and B with durations of 45 and 60 simulation steps respectively. In the second case the robot compares intervals A and B with durations
of 60 and 45 simulation steps. Part (b) regards Duration Reproduction. The first plot shows the behavior of the agent during the reproduction of a time interval
with length 71. The robot moves forward, making a sudden turn backwards when it believes that the reproduced period is completed. The second plot shows the
sinusoidal of robot’s moving direction (y-axis), during the duration reproduction task. Initially the robot moves at approximately zero degrees (sin(0o) = 0),
and as soon as the reproduction time approaches the end it turns to 90o (i.e., sin(90o) = 1 and then to 180o (i.e., sin(180o) = 0) to face the bottom of the
corridor. The bell curve is centered at 74 simulation steps which indicates that the robot reproduces the memorized duration with sufficient accuracy. Part (c)
regards Past Characterization task. The two plots show that the robot responds corectly to the experience of sound either in the distant or recent past.

To assess the accuracy of duration reproduction we examine
how the direction of robot’s motion evolves over time. The
second plot of Figure 5(b) shows the sinusoidal of the direction
of the robot during task execution. The sinusoidal of the
direction is close to zero during the first 60 steps of robot’s
motion indicating that the robot moves approximately at 0o

degrees (i.e., sin(0o) = 0). When 60 steps have passed, the
robot registers that the reproduction period is about to finish
and it starts turning. This is indicated by the gradual increase
of the sinusoidal of robot’s direction (i.e., sin(90o) = 1),
which soon after that drops again to approximately zero (i.e.,
sin(180o) = 0). According to the second plot of Figure 5(b),
the robot’s turn is centered on 74, indicating that the robot has
approximatelly memorized and reproduced the original time
interval of length 71.

We now turn to the internal dynamics in the upper layer
of the CTRNN (neural activity in the middle and lower layer
follow also oscillatory patterns, but we concentrate the discus-
sion on the upper layer of the network which exhibits more
time-relevant activity). The two black vertical lines shown in
Figure 7 (a) delineate the period of time experiencing, while
the third vertical line corresponds to the time that the ”go”
signal is given. During sound perception the upper part of
the CTRNN exhibits a counting-like functionality with the
amplitude of the oscillation increasing gradually as time goes
by (see neural activity depicted with thick lines). Interestingly,
in the subsequent duration reproduction phase, one of the
thick-drawn neurons shows an inverse pattern of neural activity
with the amplitude of the sinusoidal gradually decreasing,
similar to a reverse counting procedure.

Based on these observations, it seems that the artificial
agent develops a count-up mechanism that is used for dura-
tion observation and a count-down mechanism that is used
for duration reproduction. Note that a full reset of interval
counting at the end of the sound experiencing phase [19],
would render the count-down mechanism inappropriate for the

given task. In such a case, more resources might be required
by the cognitive system in order to explicitly memorize the
experienced duration and repetitively compare the memorized
duration with the currently reproduced duration.

3) Past Characterization: In this task, the robot has to
characterize the temporal distance of a given sound cue,
choosing whether the sensory experience was a long or short
time ago. The robot expresses its belief by navigating to the
end of the corridor and then turning either to the left or
the right side (left corresponds to distant past, while right
corresponds to recent past). The behavior of the robot for each
one of the two cases is shown in Figure 5(c). In the first case,
the robot experiences a sound 70 steps prior to the go signal,
while in the second case the robot experiences a sound 27
steps prior to the go signal.

The activity in the upper level of CTRNN neurons for each
one of the two cases is shown in the two plots of Figure 7 (b)
and (c). The onset of sound is indicated by the first vertical
line.The second vertical line shows the time that the go signal
is given. Examining the internal activities of the CTRNN, we
observe that the sound triggers a mechanism that resembles
count-down as observed in the Duration Reproduction task.
More specifically, in the distant past condition the amplitude
of the sinusoidal increases with the emission of sound (see
thick lines in the first plot of Figure 7 (b)). This increase is
followed by reverse counting that continues until the amplitude
has a sufficiently low value, indicating that it was long time
ago since a sound was experienced. In the recent past condition
(see the plot of Figure 7 (c)) the amplitude of the sinusoidal
increases again with the emision of sound, but now there is
not enough time for the amplitude to decrease and thus the
robot can easily understand that it has been a rather short time
since the last presence of the sound.

Overall, by considering the level of decrease in the am-
plitude of the oscillation, the robot distinguishes between
sound observation in the distant or recent past, and im-
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Fig. 6. The neural activity in the three layers of the of the CTRNN during a Duration Comparison task with A=45 and B=60. Each plot corresponds to a
different layer of the CTRNN.

plements diverse behavioral responses for the two cases of
past characterization (see Figure 5(c)). In other words, the
amplitude of oscillatory neural activity can not only operate
as a possible accumulator, but may also integrate an inverse
counting capacity, therefore being actively engaged in decision
making.

4) Summary: To develop a global view of the functionality
of the model, we outline the mechanisms enabling the process-
ing of time. First, it is necessary to note that cognitive activity
in the CTRNN is guided by properly shaped neurodynamic
attractors encoding the current state of the network [5]. A
neurodynamic mechanism related to the quantitative properties
of time is likely to exist in the upper level of the network
where cognitive dynamics follow an attractor of increasing size
that is correlated with the duration of the time elapsed. The
increasing size of the attractor during time perception is the
dynamic analogy of a discrete accumulator that counts clock-
like tics. In the Duration Comparison task, depending on the
relative size of the attractors during the perception of A and
B intervals, the cognitive system decides to follow either the
left-directed motion path, or the right-directed motion path,
implemented by separate behavioral attractors. In the case
of the Duration Reproduction task, the increasing perceptual
attractor in the upper level of the CTRNN encodes the duration
of the presented interval which is then used as a starting
point of the counting-down procedure that enables accurate
reproduction. When the amplitude of the oscillation is close
to zero, the agent makes a fast turn towards the bottom side
of the corridor to indicatethe end of the interval. Finally, in
the Past Characterization task, the counting-down procedure
implemented as a gradually decreasing oscillation amplitude
is employed to measure the distance to the past. In the case

that the event has occurred in the distant past, the amplitude
decreases to approximately zero and the robot initiates the left-
directed path. When the perceived event occurs in the recent
past, there is not enough time for the amplitude to decrease
and the robot follows the right-directed motion path.

Oscillations guide neural activity in all three layers of the
CTRNN facilitating the integration of top-down and bottom-
up effects on robot cognition. The top-down effect regards the
processing of time and the transformation of time judgments
to motion commands. The bottom-up effect regards the ab-
straction of a numerical notion of time out of the lower level
oscillations as well as the modulation of motion planning by
interaction with the environment. Even if different roles are
assumed for the three layers of the CTRNN, their performance
is not isolated and they remain strongly and bidirectionally
linked on the basis of oscillatory activity. In other words, what
is functional is the composite CTRNN model rather than the
isolated layers of neurons. Capitalizing on the sense of the flow
of time provided by these oscillations, the robot implements
a counting-like mechanism that facilitates the accomplishment
of the given duration processing tasks.

Focusing on duration processing and according to the
observed neurodynamics, the passage of time is intrinsically
encoded in the ordinary activity of neurons that takes care the
behavioral accomplishment of tasks. However, pure oscillatory
activity is not enough for the composite system to be aware
of interval duration. A higher level process is necessary to
monitor lower level activity and extract quantitative measure-
ments encoded in the amplitude of the oscillation. Interestingly,
the implemented counting-up and counting-down mechanism
is appropriate to process time both in the presence and the
absence of external sensory input. The interval timing mech-
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case of time experiencing in the recent past.

anism that emerges from our model is in agreement to the
proposal for a higher level representation of duration [20].

VI. DISCUSSION AND CONCLUSIONS

Despite the significant research interest that has been
devoted to time, the neural underpinnings of the sense of time
and the representation of duration in our brain remain rather
poorly understood, with controversial theories attempting to
explain experimental observations. Broadly speaking, there are
two main approaches to describe how our brain represents time
[21], [22]. The first is the dedicated approach (also known as
extrinsic, or centralized) that assumes an explicit metric of
time. This is the oldest and most influential explanation on
interval timing. The models included in this category employ
mechanisms that are designed specifically to represent dura-
tion. Traditionally such models follow an information process-
ing perspective in which pulses that are emitted regularly by
a pacemaker are temporally stored in an accumulator, similar
to a clock [15], [23], [24]. This has inspired the subsequent
pacemaker approach that uses oscillations to represent clock
ticks [16], [25]. Other dedicated models assume monotonous
increasing or decreasing processes to encode elapsed time [26],
[27]. The second approach includes intrinsic explanations (also
known as distributed) that describe time as a general and
inherent property of neural dynamics [28], [29]. According
to this approach, time is intrinsically encoded in the activity
of general purpose networks of neurons. Thus, rather than
using a time-dedicated neural circuit, time coexists with the
representation and processing of other external stimuli. An
attempt to combine the two approaches is provided by the

Striatal Beat Frequency (SBF) model which assumes that
timing is based on the coincidental activation of basal ganglia
neurons by cortical neural oscillators [?], [30]. The SBF model
assumes a dedicated timing mechanism in the basal ganglia
that is based on monitoring distributed neural activity in the
cortex.

The main limitation of the dedicated approach regards its
weakness in explaining modality specific differences in time
perception. On the other side, intrinsic models are considered
to have limited processing capacity, being inappropriate for
exploring time processing in complex and real life tasks.
However, both modeling approaches are supported by neu-
rophysiological and behavioral observations and the debate
concerning the representation of time in the brain is now more
active than ever.

Interestingly, the results obtained in the present study
demonstrate that it is possible to integrate the dedicated
and intrinsic models of time into a new enhanced modeling
approach with more explanatory power. More specifically, our
robotic experiments suggest that:

• Interval timing can be encoded in the activity of
neurons supporting ordinary cognitive tasks. This is
the main idea behind the intrinsic time representation.
So far, the main argumentation against intrinsic ap-
proaches [29] has been that they can only be useful
for the processing of short-duration intervals and thus
they have rather little to offer in the processing of
longer durations which are typically considered in
human daily activities (even if the processing of long



durations should not necessarily assume oscillatory
activity, e.g., [26]). Our study has clearly shown that,
by exploiting oscillatory dynamics, it is possible to en-
code time in the activity of neurons that support other
cognitive capacities and this approach can effectively
be used for the processing of relatively long temporal
durations, facilitating the accomplishment of complex
behavioral tasks.

• Counting oscillations can effectively facilitate the es-
timation of the elapsed time as suggested by dedicated
representation models [15], [16]. However, our model
shows that duration can be encoded in the parameters
of the oscillatory activity (in the amplitude of the
oscillation for the case of our study). In other words,
oscillations can not only implement “ticks” but ad-
ditionally provide the space for storing the estimated
duration. According to our results, oscillations may
not necessarily serve as passive pace-keepers, but they
can be actively involved in the processing of time.

Therefre, the present computational study may be a signif-
icant source of inspiration for enriching existing theories on
the functionality of the brain and thus enable neuroscientists
to come up with new and more powerful explanations.

Following our results, the dedicated and intrinsic represen-
tations of time should no longer be regarded as opponents, but
rather as key ingredients of a more flexible representational
scheme with enhanced explanatory power for real brain obser-
vations.

Our future work will mainly involve experiments that will
consider simultaneously a larger number of interval timing
tasks in artificial systems.
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