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Perception of relative timing for signals arising from different

sensory modalities depends on the recent history of

experienced asynchrony between the signals. Recent findings

suggest that the changes in perceived relative timing following

asynchrony exposure parallel the perceptual changes caused

by adaptation to non-temporal attributes. In both cases,

previous sensory stimulation changes discriminability and

briefly presented adaptors are sufficient to produce perceptual

changes that, functionally, can be consistent with repulsion and

recalibration. Furthermore, a new class of after-effects in which

reports are biased in the direction of the adaptor also occur for

both temporal and non-temporal attributes. Computationally,

the effects of previous sensory stimulation on behavior have

been assessed using Bayesian and population code models.
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Introduction
Determining the relative timing between two signals aris-

ing from different sensory modalities — whether the sig-

nals are simultaneous or the order in which they occur —

might be an important perceptual operation to determine

whether the two signals should be causally connected and

integrated into a single perceptual event [1].

The perception of relative timing for multisensory signals

has been studied since the origins of psychology (see [2]),

but only about a decade ago was it discovered that relative
www.sciencedirect.com 
timing perception is not fixed, but depends on recently

experienced asynchronies [3,4]. In such studies, audiovi-

sual stimuli are repeatedly presented with a fixed asyn-

chrony (e.g. vision leads audition by 235 ms). In

subsequent test trials, presentations of a stimulus with

a smaller asynchrony (e.g. vision leads audition by

100 ms) are apparently perceived as closer in time and

more likely to be reported as having occurred simulta-

neously than they were before the period of exposure to a

fixed asynchrony. (Figure 1a). A corresponding change in

subjective simultaneity occurs after repeated exposure to

an auditory signal leading a visual signal. The effect of

asynchrony exposure on perceived relative timing, lag

exposure effects for short, also occurs for other tasks and

combinations of signals (Box 1).

Little is known about the mechanisms underlying lag

exposure effects (Box 2), but recent studies indicate that

lag exposure effects might have properties similar to the

classic perceptual after-effects described for visual attri-

butes such as lightness, contrast, color, spatial frequency,

orientation, speed or motion direction [5,6]. Consequent-

ly, the effect of sensory history on temporal and non-

temporal attributes may be described by similar princi-

ples.

Lag exposure effects are caused by
adaptation
For non-temporal attributes, there is solid evidence that

after-effects are indeed perceptual, caused by sensory

adaptation, rather than changes in decision processes [7].

First, after-effects have neural correlates in sensory areas

[6]. Second, after-effects are behaviorally associated with

changes in the discriminability of the attribute [6,8,9]. For

relative timing, to our knowledge only one study has

examined the neural correlates of lag exposure effects

[10], and until recently there was no evidence of changes

in discriminability. In the absence of such evidence, it has

been suggested that lag exposure effects could be caused

entirely by decisional changes [11]. A recent study by

Roseboom and colleagues [12��], however, showed that

exposure to audiovisual asynchronies changes asynchrony

discrimination, supporting the idea that lag exposure

effects are perceptual after-effects similar to those

reported for non-temporal attributes and that asynchrony

exposure causes adaptation.

Function
As described in the introduction, lag exposure effects

reduce the perceived asynchrony for relative timings in

which the order of presentation of the signals matches the

order of the adaptor (Figure 1a). Phenomenologically, this
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Box 1 In addition to simultaneity judgments, lag exposure effects

have been measured using other subjective tasks such as temporal

order judgments [3,4], magnitude estimation [22], multisensory

integration [3,17,69] and, more recently, an objective three-

alternative forced choice task [12��]. Lag exposure effects occur not

only for audiovisual stimuli, but also for audiotactile [60], visuotactile

[60,70,71], and even unimodal signal combinations [72–74]. Some

studies, however, fail to find lag exposure effects for non-

audiovisual stimuli [31,32�,41,58,75].

Lag exposure effects have also been reported for relative timings

defined by a sensory signal and an action [45,68�,76–82]. Such

sensorimotor lag exposure effects may be equivalent to multisensory

lag exposure effects as the critical signals for adaptation appear to

be the sensory signal produced as a consequence of action — an

auditory beep, for example — and the sensory feedback of the

committed action — the tactile sensation of having pressed a button

[83]. However, sensorimotor lag effects are generally larger in

magnitude than other multisensory effects [76] and can exhibit a

strong subjective phenomenology of illusory temporal reversal that is

absent for other multisensory effects [76,77]. These results suggest

that the mechanisms underlying sensorimotor and multisensory lag

exposure effects may be distinct.
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(a) Lag exposure effects. Adapting to repeated presentations (only one presentation shown) of a visual signal leading an auditory signal reduces

the perceived asynchrony between a visual and auditory signal making them to appear more simultaneous. (b) Contrast adaptation. Presenting a

high contrast grating reduces perceived contrast. (c) The tilt after-effect. Adapting to a grating far from vertical makes a slightly tilted grating to

appear more vertical. (d) Transduction of physical asynchrony, contrast (e), and orientation (f) into perceived asynchrony, contrast and orientation.

In each case, the continuous black line indicates transduction before adaptation (assuming linear transduction for asynchrony. See [12��] for more

realistic transducers for asynchrony) The dotted black lines show transduction following adaptation (assuming recalibration followed by repulsion

for asynchrony, [12��]), recalibration for contrast, and repulsion for orientation. The blue dotted lines show the physical and the perceived

asynchronies, contrasts and orientations illustrated in a, b, and c.
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reduction is similar to the reduction caused by adaptation

to non-temporal attributes such as color or contrast [5,6].

For example, adaption to a high contrast grating causes a

subsequently presented lower contrast grating to be per-

ceived as even lower contrast (Figure 1b). These changes

in appearance are descriptively consistent with a lateral

shift of the transducer function in the direction of the

adaptor ([12��]; Figure 1e) and functionally associated

with recalibration [5,6]. For non-temporal attributes, re-

calibration is associated with enhancement of sensitivity

around the adaptor [5,6]. By contrast, for relative timing,

the emphasis has been placed on how recalibration can

reduce perceived asynchrony to facilitate the integration

of signals that might have different perceptual latencies

despite having a common source [3,4,13,14,30��]. How-

ever, while some findings support the idea that perceptual

integration depends directly on relative timing percep-

tion [1,3,15–17], other findings are at odds with this

hypothesis [17–21]. Consequently, whether and how per-

ceptual integration depends on perceived relative timing

remains unclear at present.
www.sciencedirect.com
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Box 2 Transfer manipulations can constrain the stage of processing

at which adaptation occurs. For visual orientation, for example,

perceptual after-effects occur when the adaptor is presented in one

eye and the test in the other, which indicates that at least part of the

adaption is cortical [85]. For the perception of relative timing, recent

studies have performed transfer manipulations for sensory modality,

stimulus content, and body limb.

Transfer across sensory modalities

Adapting to asynchronies for a given modality pair, such as an audio

and visual signal, changes not only the perceived timing for

audiovisual asynchronies (as described in the main text), but can also

change the perceived timing for other modality pairs as long as they

include one of the adapting signals, such as an auditory signal ([55];

see also [56,57]; but see [58]). Transfer across modality pairs could

be explained if adaptation affects the perceptual latency of one of

the signals in the pair [55,59] or a supramodal mechanism that

encodes relative timing ([60]; see also [61]).

Transfer across content

Several studies have found transfer of adaptation across content:

adaptation to a given audiovisual stimulus, such as a male actor

speaking, produces lag exposure effects in a different context, such

as female actor speaking [3,33,42�,62,63]. These findings support

the existence of a mechanism that processes relative timing

independently of stimulus content. However, other studies have

found a lack of transfer, that is, concurrent and distinct lag exposure

effects for different content [17,64,65], supporting the existence of a

mechanism that processes relative timing at the level of multisensory

objects. Part of the apparent inconsistency between studies may be

attributable to different adaptation paradigms. For example, in some

studies that report transfer across content, the adapting phase

consists of repeated presentations of a given stimulus combination,

such as a visual flash and a high-pitch auditory beep, and the

subsequent test phase consist of the presentation of a different

combination, such as a visual flash and a low-pitch auditory beep

[3,63]. In studies that do not show transfer, during the adapting

phase both stimulus combinations are presented, alternating

between presentation of, for example, a male speaker for which

audition leads vision and a female speaker for which vision leads

audition [17,64,65]. However, this correspondence between para-

digm and transfer does not always hold [33,62], indicating that other

factors like task demands [65] and correspondence of temporal

characteristics across sensory modalities [17] might also play a role.

Transfer across limbs

For sensorimotor lag exposure effects (Box 1), when concurrently

adapting different limbs to distinct asynchronies, multiple concurrent

lag exposure effects have been observed [66], possibly suggesting

adaptation of peripheral motor mechanisms. When only a single limb

is adapted and testing occurs in a different limb, some degree of

transfer — although qualitatively different [67] — has been found

[66,67], suggesting that central mechanisms might be also adapted.

Alternatively, rather than being related to adaptation of peripheral

versus central motor processes, this apparent difference may

instead represent a sensorimotor version of the context-contingent

effects for audiovisual discussed above (transfer across content).
The reduction of perceived asynchrony in lag exposure

effects is not only consistent with recalibration, but also

with a repulsive change in the transducer function near

the adaptor [12��,22]. Repulsion is commonly found

following adaptation for non-temporal attributes such

as spatial frequency, orientation, or motion direction

[5,6]. For example, following exposure to a grating tilted
www.sciencedirect.com 
20 degrees from vertical, a test grating tilted 10 degrees

will be slightly repulsed from the adaptor, making its

orientation appear closer to vertical (Figure 1c,f). This

increase in verticality is equivalent to the increase in

simultaneity for lag exposure effects. In comparison with

the lateral shift, which is consistent with the function of

recalibration, repulsion predicts that asynchrony adapta-

tion should cause non-uniform changes in relative timing

perception such that perception of values nearby the

adaptor is affected more strongly than those further away

(Figure 1f) — a prediction that has been recently sup-

ported [22]. The changes in discriminability reported by

Roseboom and colleagues are also consistent with repul-

sion, as long as a lateral shift of the transducer is also

incorporated ([12��]; Figure 1d). For non-temporal attri-

butes, repulsion, like recalibration, is functionally associ-

ated with an enhancement of sensitivity around the

adaptor [5,6,23–25]. For relative timing, it is not obvious

how the non-uniform changes in appearance associated

with repulsion might have functional benefits in terms of

integration [22].

Rapid adaptation
Perceptual after-effects for non-temporal attributes are

traditionally measured by presenting adaptors for a long

time — on the order of seconds — before each test pre-

sentation [23,24]. However, some studies have also shown

that adaptors presented for just tens or hundreds of

milliseconds are sufficient to produce after-effects [26–
29], a result consistent with the rapid changes in neural

response caused by adaptation [6,28]. If the principles

governing adaptation are similar for temporal and non-

temporal attributes, brief adaptation might also induce

perceptual after-effects for relative timing. Consistent

with this idea, Van der Burg and colleagues

[30��,31,32�,33] recently reported that a single exposure

to audiovisual asynchrony was enough to produce lag

exposure effects. At odds with previous studies that used

repeated presentations of the adaptor, the lag exposure

effects reported by Van der Burg and colleagues show a

large asymmetry: the asynchrony reduction is very small

when the adaptor consists of an auditory signal presented

before a visual signal. This result might indicate that short

and long adaptation operate on different mechanisms

[30��,32�].

Attractive biases
For non-temporal attributes, a different class of percep-

tual after-effects have also been reported in which per-

ception of the attribute is attracted toward the previously

experienced value of the attribute, that is, biased in the

direction opposite to classic after-effects [34–40]. Attrac-

tive biases have also been reported for relative timing

[41,42�]. In one study, for example, a series of pairs of

tactile stimuli were delivered one to each hand with a

distribution of relative timing in which, on average, the

left stimulus preceded the right by 80 ms. When exposed
Current Opinion in Behavioral Sciences 2016, 8:35–41
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to a such biased distribution, smaller asynchronies, for

example left-precedes-right by 50 ms, were apparently

perceived as closer to 80 ms [41]. However, it remains to

be determined whether the origin of these effects is

perceptual as has been shown for non-temporal attributes.

Processes pushing the system toward attractive biases and

classic negative biases might co-occur; the final sign of the

bias would depend on the balance between them

[34,37�,41,43]. For audiovisual relative timing, for exam-

ple, it has been proposed that attractive biases are not

generally observed because lag exposure effects are stron-

ger [41,42�], but can nevertheless be recovered by can-

celing out lag exposure effects [42�].

Mechanisms
Classic after-effects are often described by simple popu-

lation codes in which adaptation reduces the gain of the

neurons responding to the adaptor, and in which the

decoder is unaware that adaptation has taken place

[44]. Recalibration (for contrast, e.g.) and repulsion (for

orientation, e.g.) effects could be obtained using band-

pass and high-pass filters respectively [44]. A simple

population code model with band-pass filters has been

proposed to explain lag exposure effects in terms of

repulsion [22]. A different kind of population code model

has been proposed to explain sensorimotor lag exposure

effects in terms of recalibration [45]. Roseboom and

colleagues (2015), however, found evidence of both re-

pulsion and recalibration. To the best of our knowledge, a

population code model that can simultaneously predict

both effects has not been developed. For non-temporal

attributes, attractive biases have also been described

using population codes, but with adaptation increasing

rather than decreasing the gain of the neurons responding

to the adaptor [37�]. Whether attractive biases for relative

timing [41,42�] are also consistent with this sort of coding

has not, to the best of our knowledge, been tested.

After-effects can also be modeled using probabilistic

frameworks in which the perception of a given attribute

s, given some measurements I, is treated as an inference

problem that combines probabilistic knowledge of previ-

ously acquired information, the prior p(s), with current

sensory information, the likelihood p(Ijs), to give the

posterior probability distribution p(sjI) which the observer

can use to estimate s [46,47]. Independently of the attri-

bute considered, the posterior distribution is calculated

by multiplying the prior by the likelihood (according to

Bayes’ rule; [46]). Attractive biases can be described by a

shift of the posterior toward the prior. The precise value

of the bias depends on the shape of the prior and likeli-

hood [46]. For non-temporal attributes, attractive biases

that match the Bayesian prediction have been reported

using models in which the prior is centered statically

taking into account all trials [47,48], or is updated on a

trial-by-trial basis [39,40,49,50] to account for the biases

that depend more strongly on the stimulation presented
Current Opinion in Behavioral Sciences 2016, 8:35–41 
on the immediately previous trial. Attractive biases have

also been found and quantitatively predicted for time

intervals in the order of hundreds of milliseconds —

interval timing [51–54,84]. For relative timing, attractive

biases have been found for unimodal [41] and multisen-

sory signal combinations [42�], although the quantitative

predictions have not yet been confirmed.

Although attractive biases may be described by changes

in the prior, such changes cannot account for classic after-

effects, which are biases of perception in the opposite

direction [25]. Instead, it has been proposed that classic

after-effects could be better captured by changes in the

likelihood function. Specifically, following adaptation,

the likelihood narrows nearby the adaptor, increasing

the reliability of the measurement, I. This change is

counterbalanced by a broadening beyond the immediate

region of the adaptor, thus conserving total resources [25].

Changes in the likelihood have been incorporated in a

model of adaptation for audiovisual relative timing that

also incorporates changes in the prior, potentially ac-

counting for both attractive and lag exposure effects

[43]. The model, in which both the prior and the likeli-

hood are updated on each trial, predicts that whether an

attractive or lag exposure effect is observed depends on

the statistical properties of the presented stimuli. For

example, compared to repeated exposures of a single

value of asynchrony — such as is the case in typical lag

exposure studies — exposure to asynchronies drawn from

wider distributions should push the system toward exhi-

biting attractive biases. Although tested in different stud-

ies with different stimuli, audiovisual asynchronies drawn

from wide distributions [41,42�], produce lag exposure

effects that are even larger than those found using expo-

sures of a single value of asynchrony [3,4]. This observa-

tion is inconsistent with the extended Bayesian

framework of Sato and Aihara [43].

Conclusions
Audiovisual and sensorimotor lag exposure effects have

been the subject of many recent investigations. Although

it remains unclear whether different mechanisms under-

lie their operation, and whether they differ from those for

other multisensory combinations, the results of recent

studies suggest that the associated perceptual changes are

similar to those caused by adaptation to non-temporal

attributes.

For relative timing, it is often proposed that the function

of adaptation is the alignment of multisensory signals to

enhance multisensory integration. An alternative is that

adaptation occurs to enhance the discriminability of re-

cently experienced percepts, one of the proposed func-

tions of adaptation for non-temporal attributes [6]. For

both the perception of relative timing and non-temporal

attributes, the function of adaptation is still unclear

[6,12��].
www.sciencedirect.com
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As for non-temporal attributes, adaptation for relative

timing has been modeled using population codes and

Bayesian approaches. To date, the simple population

code models examined cannot concurrently account for

all of the components of lag exposure effects, and have

not been tested for attractive biases. Bayesian models

capable of reproducing both lag exposure effects and

attractive biases have been proposed, although they re-

quire further empirical investigation to be validated.
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