
FETPROACT-2-2014: Knowing, doing, being: cognition beyond problem solving

ACTION ACRONYM

TIMESTORM
ACTION FULL TITLE

"MIND AND TIME: INVESTIGATION OF THE TEMPORAL
TRAITS OF HUMAN-MACHINE CONVERGENCE"

GRANT AGREEMENT NO:
641100

DELIVERABLE D2.2

ROBOTIC SIMULATOR
DUE DATE

JANUARY 1ST, 2016

RESPONSIBLE PARTNER
KARLSRUHE INSTITUTE OF TECHNOLOGY

AUTHORS

TAMIM ASFOUR, EREN ERDAL AKSOY

1

Table of Content

1 Executive Summary ... 2

2 The ArmarX Software Framework ... 2
2.1 The ArmarX Robot Skill Library .. 5
2.2 The ArmarX Dynamic Simulator .. 6
2.3 The ArmarX Virtual Time Concept .. 7
2.4 Scene, Object, and Humanoid Robot Models for TimeStorm 7

3 Applications with the ArmarX Robotic Simulator .. 9
3.1 Human Motion Simulation and Reproduction .. 9
3.2 Multi-Agent Action Simulation ...11

4 References ... 12

2

D2.2 Robotic Simulator

1 Executive Summary

This deliverable introduces the robot software framework ArmarX which
provides a simulation environment for various robotics applications. In
particular, we report here on the current status of ArmarX simulator and its
possible applications which are at present being conducted by the Karlsruhe
Institute of Technology (KIT) in collaboration with TimeStorm project partners.

The here introduced robotic simulator is a part of the ArmarX framework which
is defined as an event-driven component-based robot development environment.
In the context of the TimeStorm project, we extended the robotics simulation
environment to allow generating human demonstrated manipulations by
humanoid robots. In addition, we extended the software architecture to allow
simultaneous simulation of multiple robots for collaborative manipulation tasks
and introduced the virtual time concept within the simulator. For the
experimental evaluation we set up new scene structures with various object
models arranged in different contexts.

Further, we briefly describe the use of the simulator in two ongoing research
activities and experiments in the project. The first experiment is performed in
collaboration between KIT and the University of Groningen (UoG) and is
concerned with measuring the temporal perception of real and simulated
manipulation actions performed by humans. The second experiment is
performed in collaboration between KIT and the Foundation for Research and
Technology Hellas (FORTH) and covers the simulation of multi-agent
collaborative task planning and execution with time constraints.

The deliverable is structured as follows. Section 2 gives a brief overview on the
robot software framework ArmarX. In addition, we describe the ArmarX
dynamic simulator, the virtual time concept, the setup of the simulation
environment and object models. In Section 3 we introduce two applications that
are currently being performed in the context of the TimeStorm project.

2 The ArmarX Software Framework

In cognitive systems, the representation of the perceived environment together
with the agent’s actual state information needs to be consistently stored in the
internal memory. This requirement is demanded as an essential feature in the
design of component-based robot software architectures. To explore such a vital
feature, robot software architectures should provide comprehensive memory
concepts allowing the incremental storage and fusion of a wide variety of
multimodal sensory data, including low-level continuous sensory data as well as
high-level discrete symbolic entities. These kinds of frameworks decouple the
robot’s high-level control system from the sensorimotor data processing and,
thus, yield seamless operations on acquired data.

In this regard, ArmarX is a novel component-based robot software framework
and has been recently developed at KIT in the context of the EU FP7 project

3

Xperience1 to inherently support memory-based robot software architectures
(see http://armarx.humanoids.kit.edu, [Vahrenkamp et al., 2015] and [Wächter
et al., 2015]).

Figure 1(a) shows a conceptual view of the ArmarX robot software framework.
The Middleware Layer consists of core capabilities required for implementing
distributed applications and also has basic building blocks essential for robot
software architecture operation. These building blocks are employed in the
Robot Framework Layer which provides a generic robot Application
Programming Interface (API) with more complex functionalities such as
kinematics, memory, and perception. The here provided robot API modules can
further be extended in order to implement robot specific APIs. Robot programs
are implemented in the Application Layer as distributed applications by
employing the generic and specific robot APIs. The ArmarX framework comes
with a plugin-based Graphical User Interface (GUI) which can communicate with
different components and visualize the produced data. The real time layer
ArmarX RT provides a bridge that let specialized components interact with the
ArmarX simulator or the robot hardware.

 (a) (b)

Figure 1. The ArmarX robot software framework. (a) Conceptual view of ArmarX. (b) Three
abstraction layers in ArmarX.

As illustrated in Figure 1(b), ArmarX has three abstraction layers: low-, mid-, and
high-levels. These layers essentially cover the implementation of robot
applications, extensions of robot APIs, and the realization of robot control
algorithms. The low-level layer is abstracted through the Sensor-Actor Unit
concept. This permits access to the hardware or the simulator to isolate the low
level communication from higher levels of the robot software. The mid-level layer

1 www.xperience.org

http://armarx.humanoids.kit.edu/

4

rather involves the implementation of robot capabilities such as perception,
planning, and motion generation tasks in a network transparent fashion. At the
high-level layer, a set of robot skills are designed as statecharts. These robot
skills are mainly used for building complex robot programs as sequences of
robot skills.

The ArmarX framework provides a memory structure, MemoryX consisting of
prior knowledge unit, working (i.e. short-term) and long-term data
representation units. Figure 2 depicts the overview of the MemoryX embedded
in the Robot Framework Layer (see Figure 1(a)). The persistent memory
supports long term memory structures and offers the possibility to store prior
knowledge data. The robot’s working memory (WM) is the central component
and represents the current world state. The WM unit builds the actual
representation of the world by continuous fusion of all sensor modalities. The
WM is updated via an updater interface either by perceptual process or by prior
knowledge that keeps known data such as models or features.

The existing memory units employ probabilistic reasoning concepts to ensure
that the actual information about the certainty of perceived entities is available
in the spatial and temporal domains. All memory units are organized in
individually addressable segments containing arbitrary types or classes which
are accessible within the distributed application. Based on these memories,
robot skills are developed and encoded as event-driven and reusable statecharts.
Appropriate interfaces allow attaching processes to the memory for updating
and inference.

Figure 2. MemoryX: The memory structure in the ArmarX framework.

The ArmarX software packages are publicly available under
https://gitlab.com/groups/ArmarX. Furthermore, KIT provides documentation with
installation instructions, tutorials as well as frequently asked questions at
http://armarx.humanoids.kit.edu.

https://gitlab.com/groups/ArmarX
http://armarx.humanoids.kit.edu/

5

In the following subsections, we will elaborate on some specific components
required for generating actions in the robotic simulator.

2.1 The ArmarX Robot Skill Library

In ArmarX, robot skills are encoded as reusable generic statecharts. Here, each
robot skill represents a unique robot behaviour, e.g. “placing an object” and is
stored in the long-term memory. Existing robot skills can easily be
parameterized and adapted to the actual robotic platform by configuring
parameters in the ArmarX statechart editor. Figure 3 indicates a statechart
editor for the PlaceObject skill. Here, each block defines one state and arrows
represent transitions between state pairs. Run-time parameter settings can also
be updated via configuration files which are directly accessible. This way, the
same statechart can easily be altered from, for instance, “placing a cup” to
“placing a plate”. More details on the here briefly described statecharts can be
found in [Wächter et al., 2015].

Figure 3. The ArmarX statechart editor.

In the context of the TimeStorm project, we define several perception and action
skills in the simulation environment. These skills are then employed to
implement sequence of various robot behaviours for different tasks, such as
“making cereal milk”. The following set of skills is currently available for the
TimeStorm consortium and can directly be used in the simulation environment:

¶ MoveJoints: Move joints either in position or velocity control mode
¶ MoveTCP: Move the Tool Center Point (TCP) to a goal position
¶ VisualServo: Implementation of a position-based visual servo approach
¶ MovePlatform: Move a platform-based robot to a specific goal position

6

¶ GraspObject: Grasp an object with an end effector
¶ BringObject: Pick up an object and delivers it to a goal position
¶ PlaceObject: Put down a grasped object
¶ PourObject: Lift and tilt an object to pour

¶ MixObject: Move the end effector in a circular periodic format

¶ ScanForObject: Apply a scanning strategy to search for an object
¶ TrackObject: Try to track a given object
¶ ViewSelection: Change the view direction according to an automatic

attention mechanism
¶ Open/Close/Shape Hand: Move a hand to specific shapes
¶ StopRobot: Stop all movements

2.2 The ArmarX Dynamic Simulator

The ArmarX dynamic simulator is essential for capturing the dynamics of the
robot and its interaction with the environment. Figure 4 depicts the basic
structure of the ArmarX simulation environment. The dynamic simulator follows
a component-based approach and abstracts all communications with various
units over well-defined interfaces. The initial version of the ArmarX Simulator
has been extended to meet the requirements of the TimeStorm project. For this
purpose, we first implemented an updated version of the hardware abstraction
layer. This allows for transparent implementation of hardware interfaces
through the ArmarX Sensor-Actor-Unit concept. We also decoupled the
computation of the dynamic simulation unit from the visualization. This step lets
the content of the observed world to be remotely displayed and, hence, yields an
efficient simulation. In addition, we implemented localization interface providing
consistent object and robot localization. The localization information is passed to
the corresponding memory components of ArmarX.

Figure 4. Structure of the ArmarX simulation environment.

7

2.3 The ArmarX Virtual Time Concept

In the context of the TimeStorm project, we implemented the concept of virtual
time in ArmarX in order to influence the temporal duration required for each
robot skill. The virtual time captures the elapsed time independent from the
actual CPU time. It is also required to keep the execution of robot skills
synchronized with the simulation. Calculating the properties of the dynamic
simulation might take longer than executing the statecharts, thus leading to
wrong calculations of control values.

The virtual time concept is based on a virtual clock sending out a heartbeat like
messages. Each message advances the virtual time by a configurable time delta.
For example, every time a clock message is received, the virtual clock advances
by 10 milliseconds. The frequency for sending out these clock messages is
configurable, too. It can either be synchronized with the system clock (tied to the
CPU) or it can be slowed down or sped up by a user. This allows for the execution
of robot actions to be faster or slower than regular. Additionally, it is possible to
pause and resume the virtual clock and to perform single time steps.

Figure 5. Snapshot of the ArmarX virtual time.

2.4 Scene, Object, and Humanoid Robot Models for TimeStorm

In the TimeStorm project, we aim e.g. at analyzing the temporal perception of
human demonstrated actions and their execution with robots. In this regard, we
simulated a kitchen environment in which the robot can perform various tasks,
e.g. “making cereal milk”, by manipulating different objects in different orders.
Figure 6 shows a snapshot of a sample kitchen environment together with a set

8

of sample objects modeled in the ArmarX Simulator. KIT has a rich and publicly
available 3D object model database [Kasper et al. 2012]. In TimeStorm related
applications (see Section 3), we will use these scene and object models to
accurately measure the temporal information during, for instance, the grasping
process in the simulated environment.

KIT also provides two humanoid robots: Armar-3a [Asfour et al. 2006] and
Armar-4 [Asfour et al. 2013]. Models of both robots are available in the ArmarX
simulator. Armar-3a is a fully integrated autonomous humanoid robot with a
mobile platform which allows for holonomic movability. Armar-3a has 43 DOFs
and is equipped with position, velocity, and force-torque sensors. The next
generation humanoid robot, i.e. Armar-4, is a full body torque controlled biped
robot with 63 active degrees of freedom. Figure 7 illustrates both robots in the
simulated environment.

Figure 6. Snapshot of the kitchen environment (left) with a set of sample objects (right).

Figure 7. Armar-3a (left) and Armar-4 (right) humanoid robots.

9

3 Applications with the ArmarX Robotic Simulator

In this section, we provide two experimental setups that are designed for the
TimeStorm project by using the ArmarX robot simulation environment. In the
first setup, we aim at measuring the temporal perception of real and simulated
manipulation actions performed by humans. This is a collaborative work
between KIT and the University of Groningen (UoG). The second experiment
covers the simulation of multi-agent collaborative task planning and execution
with time constraints. This is a joint work between KIT and the Foundation for
Research and Technology Hellas (FORTH).

3.1 Human Motion Simulation and Reproduction

The ArmarX simulator allows us to animate and reproduce observed human
motion patterns with the Armar-4 humanoid robot. As also described in
Deliverable 2.1., we introduced an experimental setup which investigates the
extraction of motion primitives and their temporal lengths from a set of
manipulation actions demonstrated by human subjects. For the experimental
evaluation, we recorded several types of manipulations, such as “pick & place”,
“push”, “mix”, “put in”, “put on”, “take down”, and “cut”, with a marker-based
motion capture system VICON working at 100 Hz with the error of less than 1
mm. Each action type was demonstrated by a human subject at least 5 times by
manipulating several objects (e.g. bowl, knife, whisk, sponge, bottle, etc.) at
different speeds (fast, slow, and normal) in various scene contexts.

Captured human demonstrations were then encoded in Master Motor Map
(MMM) framework, which provides a reference model of the human body and
software tools for capturing representing, visualization and reproduction of
whole-body human motion to humanoid robots with different morphologies
(Terlemez et al., 2014). Given the MMM representation of the demonstrated
action, we explored individual primitives (e.g. “approach”, “grasp”, “withdraw”,
etc.) by considering both motion characteristics (such as trajectory and velocity
profiles) of the hand and the semantic object-object and object-hand contact
relations based on a hierarchical action segmentation methods introduced in
(Wächter and Asfour, 2015). This segmentation process allows us to accurately
estimate the duration and order of action primitives. Top row in Figure 8 depicts
sample primitive frames extracted from a human demonstrated mixing action.

10

Figure 8. Human demonstrating manipulation actions (first row); Mapping of human
demonstrations to the MMM in the first person viewpoint (second row) and third
person viewpoint ((third row); Mapping to the demonstrations to the humanoid robot
Armar-4 (fourth row)

In the ArmarX simulator, we can further reproduce the captured MMM motions
of human demonstrations with an animated character from the first- and third-
person viewpoints. Second and third rows in Figure 8 respectively show sample
frames from the third- and first-person views of the animated mixing action.
These animated actions are shown to humans to estimate the temporal length of
each action. Our aim here is to provide a test-bed to investigate how time
perception and motor timing in humans are influenced by the presence of
biological movements in the real and animated visual scenes. We also intent to
compare the temporal duration that humans perceive with that of our
hierarchical segmentation method measures for each action. Note that we are
currently collaborating with UoG to investigate these issues.

Furthermore, we can generate the motion profile of each primitive with our
simulated robot Armar-4. Last row in Figure 8 indicates sample frames from the
Armar-4 execution of the same mixing action. This reveals that with our
framework we can transfer the motion profile of any observed action to different
embodiments. This is a very important tool that can help us to understand the
role of the embodiment in time perception and is subject to investigate in the
future.

11

3.2 Multi-Agent Action Simulation

In the ArmarX simulator, we are also able to simultaneously simulate multi-
agents for collaborative tasks, such as “preparing cereal milk”. In such tasks a
higher level planner, implemented by FORTH, distributes different subtasks
(such as bring, pour, mix) to each agent by considering agents’ skills with given
time constraints. In this regard, we designed a scenario within the simulator
which involves both of our humanoid robots, i.e. Armar-3a and Armar-4, in a
simulated kitchen environment. In this scenario, we assume that both agents
have different capabilities. For instance, Armar-3a is skilled at moving faster
since it has a mobile platform, whereas Armar-4 can more efficiently perform the
pouring and mixing actions due to its highly flexible kinematic design. In the
simulation, each robot has its own working memory unit which leads to better
cognitive reasoning. We are, on the other hand, synchronizing the working
memories in order to achieve more accurate communication between agents.
Figure 9 illustrates sample frames from a collaborative task in which Armar-3a is
bringing a milk box while Armar-4 is placing a bowl on a table.

Figure 9. Multi-agent collaborative action execution in the ArmarX Simulator.

12

4 References

Asfour, T., Schill, J., Peters, H., Klas, C. , Bücker, J. , Sander, C., Schulz, S., Kargov, A.,
Werner, T. and Bartenbach, V. (2013), “ARMAR-4: A 63 DOF Torque
Controlled Humanoid Robot”, IEEE/RAS International Conference on
Humanoid Robots.

Asfour, T, Regenstein, K., Azad, P., Schröder, J., Vahrenkamp, N., and Dillmann R.
(2006), “ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor
Control”, IEEE/RAS International Conference on Humanoid Robots

Kasper, A., Xue, Z., Dillmann, R. (2012) “The KIT object models web database: An
object model database for object recognition, localization and
manipulation in service robotics”, The Inter. Journal of Robotics Research.

Terlemez, O., Ulbrich, S., Mandery, C., Do, M., Vahrenkamp, N., and Asfour, T.
(2014), “Master Motor Map (MMM) - Framework and Toolkit for
Capturing, Representing, and Reproducing Human Motion on Humanoid
Robots”, IEEE/RAS International Conference on Humanoid Robots.

Vahrenkamp, N., Wächter, M., Kröhnert, M., Welke, K. and Asfour, T. (2015) “The
Robot Software Framework ArmarX”, Information Technology, Vol. 57,
No. 2, pp. 99 – 111.

Wächter, M., Asfour, T. (2015) “Hierarchical Segmentation of Manipulation
Actions based on Object Relations and Motion Characteristics”.
International Conference on Advanced Robotics.

Wächter, M., Ottenhaus, S., Kröhnert, M., Vahrenkamp, N., and Asfour, T. (2015)
“The ArmarX Statechart Concept: Graphical Programming of Robot
Behaviour”, Frontiers in Robotics and AI (submitted).

